After a series of leaks and rumors, Google has finally unveiled the Pixel 6 and Pixel 6 Pro. As expected, the Pixel 6 series comes with an in-house Google Tensor chip, which is custom-designed by Google in collaboration with Samsung. With Google’s first-ever custom silicon launch, the company has joined the smartphone chipset war against Apple and Qualcomm. So in this article, we compare Google Tensor, Snapdragon 888, and A15 Bionic to see if Google can stand its ground in the raging SoC battle. On that note, let’s go ahead and find out who wins between Google Tensor vs Snapdragon 888 vs A15 Bionic.
In this comparison between Google Tensor, Snapdragon 888, and the A15 Bionic, we have discussed the CPU performance, GPU, ISP, AI & ML capabilities, and more. You can expand the table below and move to any section at any time you want.
- Google Tensor vs Snapdragon 888 vs A15 Bionic: SpecificationsGoogle Tensor vs Snapdragon 888 vs A15 Bionic: CPUGoogle Tensor vs Snapdragon 888 vs A15 Bionic: GPUGoogle Tensor vs Snapdragon 888 vs A15 Bionic: ISPGoogle Tensor vs Snapdragon 888 vs A15 Bionic: AI and MLGoogle Tensor vs Snapdragon 888 vs A15 Bionic: Connectivity
Google Tensor vs Snapdragon 888 vs A15 Bionic: Specifications
Here is the specs comparison between Google Tensor, Snapdragon 888, and A15 Bionic. For a brief overview of all three chipsets, you can take a glance below:
Google Tensor vs Snapdragon 888 vs A15 Bionic: CPU
First and foremost, let’s talk about Google Tensor’s CPU capability. Of late, we are seeing companies putting less focus on CPU and assigning more resources to GPU, AI, and ML co-processors. We observed the same trend during our in-depth comparison between Apple M1 vs M1 Pro vs M1 Max. And a similar trend is at play with Google’s Tensor chipset as well. Right off the bat, Google is not chasing numbers with its Tensor chip and instead focused on delivering “experiences” with day-to-day tasks.
According to Phil Carmack, the vice president and general manager of Google Silicon, the idea is to choreograph the interplay between the CPU, GPU, ISP, AI, and ML co-processors rather than completing a task by putting a high-performant core into action. Google is calling it “Heterogeneous computing,” where all co-processors come together to achieve a task.
Now coming to GPU, where most of the action is happening nowadays. It seems Google has gone all-in and packed a powerful 20-core Mali G78 GPU on its first Tensor chip. To give you a perspective, even Samsung has used the 14-core Mali G78 GPU on the flagship S21 Ultra, but Google wants to have more power in its hand to drive GPU-intensive tasks and deliver a fluid and smooth experience without a hiccup.
If we pit Google Tensor’s GPU against A15 Bionic’s custom GPU — assuming Google Tensor is better than Snapdragon 888 due to the 20-core GPU, I think it will match Apple’s latest A-series mobile chip. Snapdragon 888 was already 10-15% behind the A15 Bionic, and with a beefy GPU on Google Tensor, it’s highly likely we have a winner in the Android world.
Google Tensor vs Snapdragon 888 vs A15 Bionic: ISP
Google has not shared many details about its ISP, except that it can now perform computational photography on each frame of a video (touted as Google HDRnet), which is mind-blowing. And yes, we are talking about a 4K @ 60FPS video. You will be able to shoot HDR videos at 4K @ 60FPS in the signature Pixel look.
On the other hand, the Spectra 580 ISP on Snapdragon 888 is pretty powerful and can handle HDR concurrent streams from three cameras. It allows the ISP to collect more light and quickly create an image stack for a better shot. The Spectra 580 ISP can shoot images up to 200MP and record videos up to 8K at 30FPS.
The Mountain View giant says that one of the major reasons for developing its own custom processor was to realize its vision of AI and ML capabilities on smartphones. Google felt that despite having all the AI smarts and advanced ML models, it was somehow unable to deliver the experience it was envisioning for Pixel users.
So Google partnered with Samsung and its in-house Tensor team to create a custom TPU (Tensor Processing Unit). In a way, TPU is the heart and soul of the new Google Tensor chip. The company wants to do more meaningful things with A, thus, improving the user experience and helping users perform day-to-day tasks with ease.
For example, the on-device translation uses an offline ML model to live translate various languages. Then, there is scene and face detection, hands-free Gboard dictation with punctuation support, Motion mode, Direct My Call feature, Tone Mapping, and a plethora of things — all powered by Google’s TPU unit. There’s also a new Magic Eraser feature that lets you remove photobombers or distractions from a picture with a click. And it works with not just pictures clicked on the Pixel 6 but older pictures as well.
Talking about Snapdragon’s 888 AI accelerator, the Hexagon 780 DSP can deliver up to 26 TOPS. Again, it’s important to note that all these numbers are meaningless if you don’t find features that can actually take advantage of AI and ML capabilities. This is where Google shines because it controls both hardware and software verticals.
Google Tensor vs Snapdragon 888 vs A15 Bionic: Connectivity
Instead of Qualcomm’s modem, Google has integrated Samsung’s Exynos 5123 modem in its first custom Tensor chip. It supports both mmWave and sub-6GHz 5G networks. Theoretically, it supports download speeds of up to 7.3Gbps and upload speeds of up to 3.6Gbps. In addition, you have got Wi-Fi 6E and Bluetooth 5.2. Moving to Snapdragon 888 and A15 Bionic, both come with Qualcomm’s X60 5G mode, which has a peak download speed of 7.5Gbps and a peak upload speed of 3Gbps.